Geometric broadening in resonant tunneling through Si quantum dots
نویسندگان
چکیده
The current through a resonant tunneling diode consisting of Si quantum dots embedded in a SiO2 matrix is calculated and the resonance broadening effects caused by distributions of quantum dot diameter and asymmetric barrier thicknesses are simulated. It is demonstrated that a size distribution is extremly critical for the use of these structures as selective energy contacts for hot carrier solar cells, requiring precision at the order of 1 Å. © 2009 Published by Elsevier B.V.
منابع مشابه
Effect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملEffect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملImpact of Silicon Wafer Orientation on the Performance of Metal Source/Drain MOSFET in Nanoscale Regime: a Numerical Study
A comprehensive study of Schottky barrier MOSFET (SBMOSFET) scaling issue is performed to determine the role of wafer orientation and structural parameters on the performance of this device within Non-equilibrium Green's Function formalism. Quantum confinement increases the effective Schottky barrier height (SBH). (100) orientation provides lower effective Schottky barrier height in compa...
متن کاملNon-equilibrium quantum dots: transport
The electronic transport through three-dimensionally confined semiconductor ’quantum dots’ is investigated and analyzed. The spectrum corresponds to resonant tunneling from laterally confined emitter contact subbands through the discrete three-dimensionally confined quan tum dot states. Momentum non-conservation is observed in these structures.
متن کاملترابرد در دیودهای تونلزنی تشدیدی نقطه کوانتومی در رژیم غیربرهمکنشی
In this paper, we used green's function approach in microscopic theory to investigate a resonant tunneling diode (RTD). We introduced the detailed Hamiltonian for each part of the photovoltaic p-i-n system, then by calculating the green's function components in tight-binding approximation, we calculate local density of states and current-voltage characteristic of the p-i-n structure. Our result...
متن کامل